Какой показатель регистрируется с помощью метода фика. Минутный объем сердца. Производные показатели внутрижелудочкового давления

Измерение

Принцип Фика.

В клинической практике сердечный выброс (СВ) можно оценить измерением импе­данса грудной клетки или более обычным и надежным методом разведения индикатора.

В своей простейшей форме первичную основу определения СВ по методу Фика можно объяснить следующим образом: количество любого маркера, содержащегося в ста­тическом объеме, представляет собой произведение этого объема и концентрации.

В классическом варианте в качестве индикатора использовался краситель, поддаю­щийся обнаружению спектрофотометрическим методом (например, индигоцианин или "кардиогрин"), который связывается с плазменным белком.

В динамической системе, в которую непрерывно добавляется и из которой непрерыв­но выводится маркер, скорость выведения маркера равна произведению скорости потока и разности концентраций на входе и выходе области выведения.

В равновесном состоянии никакого повышения или снижения маркера не происхо­дит.

Например, если артериальный кислород потребляется организмом и пополняется с той же скоростью легкими, VO2 - это произведение СВ и разности концентраций О2 меж­ду артериальной и смешанной венозной (легочной артериальной) кровью.

Поэтому, если скорость потребления О2 известна или легко оценивается, определив содержание О2 в артериальной и смешанной венозной (взятой из легочной артерии) крови, можно вычислить скорость потока (сердечный выброс).

Однако в нестабильных условиях результаты этих вычислений могут быть совер­шенно ошибочными.

Термодилюционный метод.

Подобный же принцип применяется для определения СВ термодилюцией, при кото­рой введенный и разведенный тепловой маркер является тепловым дефицитом и скорость его исчезновения за счет разбавления теплой венозной кровью является показателем ско­рости кровотока.

Хотя все введенные в легочную артерию катетеры позволяют получить пробу сме­шанной венозной крови для определения по методу Фика, возможности термодилюции обеспечивают более удобное, повторяющееся и точное измерение кровотока.

Чувствительный малоинерционный термистор, прикрепленный к концу катетера, под влиянием колебаний температуры непрерывно изменяет электрическое сопротивление, реагируя на тепловые изменения в крови легочной артерии.

Как дополнительное преимущество термистор обеспечивает высоконадежное, не­прерывное считывание внутренней температуры тела.

Когда порция холодной жидкости поступает в правое предсердие, она смешивается с теплой венозной кровью, возвращающейся с периферии.

Правый желудочек перемешивает и гомогенизирует две жидкости, и термистор реги­стрирует динамическую температурную кривую, образующуюся, когда смесь промывает проксимальную часть легочной артерии.

Связь СВ с температурой выражается формулой Стюарта - Гамильтона:

Q = V (Тв - Т1) K,K2/TB(t) dt,

где Q - сердечный выброс; V - введенный объем; Тв - температура крови; Т, - температура введенной жидкости; TB(t) dt - изменение температуры крови как функция времени; К1К2 - вычислительные коэффициенты.

Компоненты числителя - это или известные константы (V, К1 К2), или измеренные величины (Тв, Т1).

Знаменатель - площадь под кривой "температура - время", полученная компью­терным интегрированием сигнала термистора.

При должном внимании к методу получения данных термодилюционный метод оценки СВ дает информацию, хорошо сопоставимую с результатами, полученными в ста­бильном состоянии методом Фика (Fick) и разведением красителя.

Технические трудности и потенциальные ошибки

Положение термистора.

Кроме немногочисленных довольно очевидных исключений, большинство тех­нических ошибок при определении СВ связано со слишком высокой оценкой истинной величины.

Чтобы правильно оценить выброс, термистор должен воспринимать хорошо сме­шанный холодный "заряд" известной величины и свободно лежать в просвете централь­ной легочной артерии.

Контакт со стенкой сосуда или инкапсуляция сгустком вызывает изоляцию терми­стора от холодного потока, искажая измеряемую величину.

Форма кривой давления в легочной артерии, которая кажется сглаженной или угло­ватой, может указывать на неправильное расположение термистора и связанные с этим потенциальные проблемы.

Хорошая клиническая практика предполагает периодическую проверку кривой "тем­пература - время", особенно когда полученные результаты расходятся с остальной ча­стью клинической картины, когда последовательные оценки чрезвычайно вариабельны или когда возникают другие вопросы по точности температуры.

Для правильной кривой характерны быстрое изначальное снижение до минимальной величины и постепенное возвращение к исходному уровню через 10-15 с после введе­ния.

Искаженные кривые должны насторожить врача в отношении возможного неадек­ватного смешивания введенного вещества с кровью, контакта термистора со стенкой со­суда, патологического характера дыхания и аритмии или резкого изменения частоты сер­дечных сокращений.

Информация от нетипичных кривых использоваться не должна.

Вводимый объем и температура.

Охлаждение вводимого вещества подчеркивает тепловое различие между маркером и кровью, увеличивая силу сигнала.

Хотя охлаждение теоретически повышает точность и воспроизводимость измерений, достигнутая сейчас превосходная чувствительность системы "термистор - компьютер" позволяет использовать вводимое вещество при комнатной температуре без значительной потери точности.

Комнатная температура не требует 45-минутного периода выравнивания, необходи­мого для завершения охлаждения; поддержание надлежащей температуры вводимого ве­щества облегчается, и ошибки, вызванные повторным нагреванием во время обработки, минимальны.

Кроме того, брадикардия и предсердные аритмии в течение введения в этом случае встречаются редко.

Нередко вводят объемы величиной 10 мл при комнатной температуре, но можно ис­пользовать объемы 5 мл (с соответствующим регулированием компьютера) с приемлемы­ми результатами, когда частые измерения представляют существенную опасность объем­ной перегрузки.

В случае серьезной гипотермии пациенты, однако, требуют большего объема для по­лучения приемлемого соотношения "сигнал - шум" фона.

Какой бы объем ни вводился, шприцы должны быть наполнены особенно тщательно; изменения вводимого объема вносят заметный вклад в ошибку измерения.

Кристаллоидная жидкость, выбранная для введения, - солевой раствор или декстро­за - существенно не влияет на результат вычисления.

Когда введение заканчивается в течение 4 с, скорость введения не оказывает замет­ного влияния на результат; автоматизированные инъекторы не обладают убедительными преимуществами перед ручным введением.

Изменения дыхания.

Температура крови в легочной артерии имеет тенденцию в течение дыхательного цикла меняться, особенно во время искусственной вентиляции легких.

Было высказано мнение, что введение следует начинать всегда в одной точке дыха­тельного цикла, но необходимость такой методики спорна.

Одно из компромиссных решений состоит в том, чтобы сделать по крайней мере три введения через равные доли дыхательного цикла и усреднить результаты.

Несоответствие катетера и компьютера.

Коэффициенты широко изменяются в зависимости от величины объема, температу­ры вводимого вещества и типа используемого катетера.

Если измеренный сердечный выброс не соответствует клинической картине, особен­но когда с тем же самым компьютером используются катетеры различного производ­ства, следует заподозрить несоответствие обоих элементов.

Анатомические изменения.

Значения сердечного выброса, полученные термодилюционным методом, обычно точны, если вычислительные коэффициенты введены правильно, катетер установлен на нужном участке и используется соответствующая техника введения.

Однако такие не вводимые оператором переменные, как внутрисердечное шунтиро­вание, недостаточность трехстворчатого клапана или неисправность термистора из-за теп­ловой изоляции контактом со стенкой или сгустком, может снизить достоверность резуль­татов.

Ошибки также могут вызываться ошибочным увеличением холодовой нагрузки, со­путствующим быстрому внутривенному введению жидкостей вблизи правого предсердия.

Клиническая интерпретация сердечного выброса

Важная диагностическая информация относительно функционального статуса сердца и сосудистой сети часто может быть получена при сопоставлении измерения сердечного выброса и давления наполнения желудочков.

Особенно полезны для этой цели исследования с использованием жидкости.

Однако СВ должен интерпретироваться в соответствии с массой и метаболизмом па­циента. СВ величиной 3 л/мин может удовлетворять потребности охлажденного истощен­ного больного массой 40 кг, но тот же самый СВ может ассоциироваться с циркуляторным кризисом у ранее здоровой жертвы ожога с массой тела 100 кг.

Чтобы учесть диапазон изменения массы тканей, используется сердечный индекс (СИ = СВ/поверхность тела).

Площадь поверхности тела (ППТ) можно определить по существующим номо­граммам или приближенно рассчитать по следующему уравнению:

ППТ = 0,202 х Wt0,425 х Ht °’725,

где ППТ выражена в квадратных метрах, Wt - масса тела в килограммах и рост (Ht)

В метрах.

Однако используемый отдельно СИ приносит ограниченную пользу при оценке аде­кватности перфузии.

Вследствие своего широкого диапазона любая данная величина СИ может сопутст­вовать обильной, относительно адекватной или недостаточной доставке О2 тканям в зави­симости от концентрации гемоглобина, метаболических потребностей и распределения кровотока.

Измерение диуреза и метаболическая продукция кислот (содержание анионов и лак­тата в плазме) вместе с индексами утилизации тканями кислорода (например, экстракция О2) позволяют точнее судить об адекватности перфузии.

Индексы сосудистого сопротивления.

Чтобы определить постнагрузку желудочков и причину гипотензии, можно исполь­зовать оценку СВ в сочетании с измерениями легочного и системного давления для вы­числения параметров сосудистого сопротивления.

Эти показатели сосудистого сопротивления дополняют данные о среднем системном давлении крови при выборе сосудорасширяющей и вазопрессорной терапии.

Общелегочное сосудистое сопротивление (ОЛСС) и общепериферическое со­судистое сопротивление (ОПСС) - приблизительные показатели, рассчитанные, исходя из предположения о применимости закона Пуазейля для ламинарного потока:

ОЛСС = (Рра - Pw)/CB и ОПСС = (САД - Pra)/CB,

где СВ - сердечный выброс, САД - среднее системное артериальное давление, Рра

Среднее давление в легочной артерии и Рл - среднее давление в правом предсердии.

Показатели ОЛСС и ОПСС в клинической практике применяются широко, но следу­ет прибегать и к вычислению сосудистого сопротивления, лучше всего в связи с площа­дью поверхности тела, с использованием сердечного индекса вместо сердечного выброса.

Результирующие величины - системный и легочный индексы - позволяют избе­жать вводящего в заблуждение влияния размеров тела на исходные параметры.

Существенное повышение легочного индекса практически всегда указывает на ос­новную патологию легких, отражая воздействие стенозирующих и обтурирующих факто­ров на легочное капиллярное русло.

К сожалению, однако, сложное отношение между ОЛСС и СВ часто затрудняет их физиологическую интерпретацию.

Изменения индекса общелегочного сосудистого сопротивления должны оцениваться с полным пониманием того, что он зависит от выброса.

При вычислении ОЛСС следует принять во внимание, что, когда легочное сосуди­стое русло не находится в нормальном состоянии, сопротивление может меняться как функция кровотока.

Фактически величина ОЛСС, так же как и ее реакция на намеренное изменение сер­дечного выброса, может служить полезным прогностическим показателем при таких ост­рых заболеваниях легких, как ОРДС (рис.2.9).

Отсутствие роста ОЛСС в ответ на увеличение сердечного выброса говорит о вполне достаточном резерве; острое увеличение ОЛСС параллельно росту сердечного выброса указывает на обширную облитерацию легочного сосудистого русла.

ОПСС может повышаться до высоких значений, поддерживая "субоптимальный" сердечный выброс путем стабилизации соответствующего давления перфузии в жизненно важном капиллярном русле.

Однако чрезмерный рост ОПСС может затруднить работу ослабленного левого же­лудочка.

Рис. 2.9. Зависимость разности давлений (Ррд-Pw), вызывающей протекание крови через сеть ле­гочных сосудов, и сопротивления легочных сосудов от сердечного выброса. Кривая (Ррд-Pw) от сердечного выброса не проходит через начало координат зависимости функции, и вычисленные значения сопротивле­ния легочных сосудов (тангенс угла наклона данной кривой к горизонтальной оси), видимо, в норме снижа­ются по мере повышения сердечного выброса. При наличии заболевания отношение величины движущего давления к величине потока крови нелинейно, и поэтому сопротивление легочных сосудов (ОЛСС) может казаться неизменным или повышающимся. Вычисление ОЛСС на основе изменений (Ррл-Pw) и сердечного выброса (например, наклона линии АБ) помогает устранить трудности интерпретации.

Доставка кислорода.

Одно из наиболее полезных применений данных о сердечном выбросе - лечение гипоксемии.

Поскольку ткани пытаются извлечь такое количество кислорода, которое требуется, чтобы поддержать аэробный метаболизм, напряжение О2 в смешанной венозной крови па­дает, когда доставка О2 (произведение величин СВ и содержания О2 в артериальной кро­ви) становится неадекватной метаболическим потребностям тканей.

Если доля венозной > шунтирующей легкие, остается неизменной, напряжение О2 в артериальной крови может резко упасть, так как эта не насыщенная кислородом кровь смешивается с кровью, прошедшей через капилляры хорошо вентилируемых участков легких.

Таким образом, угнетенный СВ может вносить определенный вклад в гипоксемию, а изменения сердечного выброса иногда объясняют озадачивающие изменения в напряже­нии артериального О2.

Катетеризация полостей сердца выполняется с помощью пункции и чрескожного введения катетера в сосуд - периферическую вену (локтевая, подключичная, югулярная, бедренная) для правых отделов сердца или артерию (плечевая, бедренная, аксиллярпая, лучевая) для левых отделов сердца.

, , , , , , , ,

Методика проведения катетеризации полостей сердца

Метод термодилюции

При этом методе используется охлажденный изотонический раствор натрия хлорида (5-10 мл), который вводят по многопросветному катетеру в правое предсердие, кончик катетера с термистором находится в легочной артерии. Калибровку кривых осуществляют кратковременным включением постоянного сопротивления, которое дает отклонения регистрирующего устройства, соответствующие определенному для данного термистора изменению температуры. Большинство приборов для термодилюции снабжено аналоговыми вычислительными устройствами. Современная аппаратура позволяет производить до 3 измерений МО крови в течение 1 мин и многократно повторять исследования. Сердечный выброс, или МО, определяется по следующей формуле: МО = V (Т1 - Т2) х 60 х 1,08 / S (л/мин),

где V - объем введенного индикатора; Т1 - температура крови; Т2 - температура индикатора; S - площадь под кривой разведения; 1,08 - коэффициент, зависящий от удельной плотности и теплоемкости крови и изотонического раствора натрия хлорида.

Достоинства термодилюции, а также потребность катетеризации только венозного русла делают этот метод в настоящее время наиболее приемлемым для определения сердечного выброса в клинической практике.

Некоторые технические аспекты работы катетеризационной лаборатории

Персонал катетеризационной ангиографической лаборатории включает заведующего, врачей, операционный средний медперсонал и рентгенотехников (рентгенолаборантов), если применяется кинорентгено- и крупноформатная съемка. Влабораго риях, испол ьзующих только видеофильмы и компьютерную запись изображения, рентгенолаборанты не нужны. Все сотрудники лаборатории должны владеть приемами сердечно-легочной реанимации, для чего в рентгеновском операционном кабинете должны быть соответствующие медикаменты, дефибриллятор, приспособление для электрической стимуляции сердца с набором электрод-катетеров, центральная подача кислорода и (желательно) аппарат для искусственной вентиляции: легких.

Сложные и рискованные диагностические процедуры и ЧКВ (ангиопластика, стентирование, атерэктомия и др.) желательно проводить в клиниках, где есть кардиохирургическая бригада. Согласно рекомендации The American College of Cardiology/American Heart Association, ангиопластика и обследование пациентов с высоким риском осложнений, ОИМ могут выполняться опытными, квалифицированными специалистами без наличия в госпитале кардиохирургической поддержки, если пациент не может быть транспортирован в более подходящее место без дополнительного риска. В Европе и некоторых других странах (в частности, и в России) все чаще выполняют эндоваскулярные вмешательства без наличия кардиохирургов, так как потребность в экстренном кардиохирургическом пособии в настоящее время крайне низка. Достаточно договоренности с какой-либо расположенной поблизости клиникой сердечно-сосудистой хирургии для экстренного перевода туда больного в случае возникновения пери- и постпроцедурных осложнений.

Для поддержания формы, квалификации и мастерства операторов в лаборатории в год должно выполняться не менее 300 процедур, а каждый врач должен делать в год не менее 150 диагностических процедур. Для катетеризации и ангиографии необходимы высокоразрешающая рентгеноангиографическая установка, система для мониторирования ЭКГ и внутрисосудистого давления, архивирования и обработки ангиографических изображений, стерильный инструментарий и различные виды катетеров (разные типы катетеров для коронарной ангиографии описаны ниже). Ангиографическая установка должна быть оборудована приставкой для киноангиографического или цифрового компьютерного получения изображения и архивирования, иметь возможность получения изображения в режиме онлайн, т. е. сразу с количественным компьютерным анализом ангиограмм.

Изменения кривых внутриполостного давления

Кривые внутриполостного давления могут изменяться при различных патологических состояниях. Эти измене-ния служат для диагностики при обследовании пациентов с разнообразной патологией сердца.

Чтобы понимать причины изменения давления в полостях сердца, необходимо иметь представление о временных взаимоотношениях между механическими и электрическими процессами, происходящими в течение сердечного цикла. Амплитуда а-волны в правом предсердии выше амплитуды у-волны. Превышение у-волны над а-волной в кривой давления из правого предсердия говорит о нарушении заполнения предсердия во время систолы желудочков, что бывает при недостаточности трикуспидального клапана или дефекте

При стенозе трикуспидального клапана кривая давления в правом предсердии напоминает таковую в левом предсердии при стенозе митрального клапана или констриктивном перикардите, когда в середине и конце диастолы появляется снижение и плато, типичные для повышенного давления во время ранней систолы. Среднее давление в левом предсердии достаточно точно соответствует давлению заклинивания легочной артерии и диастолическому давлению в легочном стволе. При недостаточности митрального клапана без стеноза происходит быстрое снижение давления во время начала систолы (снижение у-волны), а затем постепенное повышение его в позднюю диастолу (диастаз). Это отражает достижение равновесия давления в предсердии и желудочке в позднюю фазу желудочкового наполнения. Напротив, у пациентов с митральным стенозом снижение у-волны происходит медленно, при этом давление в левом предсердии продолжает снижаться на протяжении всей диастолы, а признаков диастаза пульсового давления в левом предсердии нет, так как сохраняется атриовентрикулярный градиент давления. Если митральный стеноз сопровождается нормальным синусовым ритмом, го а-волна в левом предсердии сохраняется и сокращение предсердий обусловливает создание большого градиента давления. У больных с изолированной митральной регургитацией v-вoлнa четко выражена и имеет отвесное нисходящее колено у-линии.

На кривой левожелудочкового давления точка КДД непосредственно предшествует началу его изометрическо го сокращения и располагается сразу после а-волны перед с-волной левопредсердного давления. КДД левого желудочка может повышаться в следующих случаях: сердечной недостаточности, если желудочек испытывает большую нагрузку, вызванную избыточным притоком крови, например при аортальной или митральной недостаточности; гипертрофия левого желудочка, сопровождающаяся снижением его растяжимости, эластичности и податливости; рестриктивная кардиомиопатия; констриктивный перикардит; тампонада сердца, вызванная перикардиальным выпотом.

При стенозе аортального клапана, который сопровождается затрудненным оттоком крови из левого желудочка и повышением в нем давления по сравнению с систолическим давлением в аорте, т. е. появлением градиента давления, левожелудочковая кривая.давления напоминает кривую давления во время изометрического сокращения. Ее очертания более симметричны, а максимальное давление развивается позже, чем у здоровых лиц. Похожая картина наблюдается и при записи давления в правый желудочек у пациентов со стенозом легочной артерии. Кривые АД также могут различаться у больных со стенозом устья аорты различного типа. Так, при клапанном стенозе наблюдается медленное и отсроченное повышение волны артериального пульса, а при гипертрофической кардиомиопатии начальное резкое повышение давления сменяется его быстрым снижением и затем вторичной положительной волной, отражающей обструкцию во время систолы.

Производные показатели внутрижелудочкового давления

Скорость изменения/повышения кривой внутрижслудочкового давления во время фазы изоволюмического сокращения называют первой производной - dр/dt. Раньше ее использовали для оценки сократимости миокарда желудочков. Величина dр/dt и вторая производная - dр/dt/р - рассчитываются по кривой внутрижелудочкового давления с использованием электронной и компьютерной техники. Максимальные значения этих показателей представляют собой индексы скорости сокращения желудочка и помогают оцепить сократимость и инотропный статус сердца. К сожалению, большой разброс этих показателей у разных категорий больных не позволяет разработать какие-либо усредненные нормативы, но они вполне применимы у одного больного с исходными данными и на фоне применения препаратов, улучшающих сократительпую функцию сердечной мышцы.

В настоящее время, имея в арсенале обследования пациентов такие методы, как ЭхоКГ в различных ее модификациях, компьютерная (КТ), электронно-лучевая и магнитно-резонансная томография (МРТ), столь важного значения, как ранее, эти показатели для диагностики кардиальных патологий не имеют.

Метод разработан и описан A. Fick в 1870 году, который в качестве индикатора предложил использовать кислород. Для измерения СВ определяют количество кислорода, поглощаемое из воздуха за определенный отрезок времени. Одновременно берут пробы артериальной и смешанной венозной, взятой из устья легочной артерии, крови и определяют в них содержание кислорода. При этом необходимо определить разницу в содержании кислорода в артериальной и венозной крови, то есть измерить количество кислорода, которое связывается каждым кубическим сантиметром крови во время ее прохождения через легкие. Сердечный выброс вычисляют по формуле:
СВ = П02 / (Са02 -Св02),

где СВ - сердечный выброс, л/мин (фактически - количество крови, проходящей через малый круг кровообращения); П02 - потребление кислорода, мл/мин, Са02 - содержание кислорода в артериальной, а Св02 - в венозной крови, мл/л.

Потребление кислорода определяют с помощью спирометра, а артериовенозную разницу по кислороду оценивают, анализируя содержание кислорода в одной из магистральных артерий и легочной артерии.

Поскольку принцип Фика , как любой из методов, основанных на разведении индикатора, подразумевает его равномерное смешивание с кровью, на время проведения исследования необходимо соблюдение следующих условий:
стабильное состояние дыхания и кровообращения в момент исследования;
анализ содержания кислорода должен проводиться только в смешанной венозной крови, взятой из ствола легочной артерии, где сходятся все венозные сосудистые пути;
с помощью прямого принципа Фика нельзя определять СВ при наличии внутрисердечных сбросов крови, поскольку в данном случае часть крови минует малый круг кровообращения.

Несмотря на то что прямой метод определения сердечного выброса по Фику - один из самых точных, в отделениях интенсивной терапии и реанимации он применяется сравнительно редко. Это обусловлено необходимостью сравнительно сложного и дорогостоящего оборудования для оценки потребления кислорода. Вместе с тем в условиях проведения искусственной вентиляции легких эта задача облегчается при использовании современных метаболических мониторов, позволяющих определять содержание кислорода и углекислого газа в контуре вдоха и выдоха. Показатель V02 вычисляют, умножив разницу содержания кислорода на вдохе и выдохе на величину минутного объема дыхания. В настоящее время имеются аппараты ИВЛ со встроенным метаболическим монитором, в которых помимо других параметров осуществляется постоянное измерение V02.

Для получения смешанной венозной крови необходима катетеризация легочной артерии. Связанные с этим проблемы описаны в разделе, посвященном методу терморазведения. Для этих целей можно использовать плавающий катетер с баллоном на конце типа Pulmobal, однако в клинической практике чаще используются термодилюционные катетеры Свана-Ганса, которые от предыдущих отличает наличие встроенного термистора. Поскольку при установленном катетере в легочную артерию СВ проще определить с помощью метода терморазведения, метод Фика может быть оставлен для случаев, когда отсутствует или неисправен регистратор (термодилютор).


Фика метод

(A. Fick, 1829-1901, нем. врач) метод измерения минутного объема сердца, основанный на определении разницы в содержании кислорода или двуокиси углерода в крови, взятой из правых отделов сердца, и в артериальной крови, а также одновременном определении потребления кислорода или выделения двуокиси углерода.

Для измерения сердечного выброса применяют либо метод Фика, либо (чаще) термодилюцию. Эталонным методом, однако, остается метод Фика. По сути, это разновидность метода разведения красителя: "красителем" здесь выступает кислород, место введения - легкие, способ введения - непрерывный. Метод Фика включает определение артериовенозной разницы по кислороду и измерение его потребления.

Уравнение для расчета сердечного выброса таково:

CB = VO2:C(a-v)O2, где

СВ - сердечный выброс, л/мин;

VO2 - потребление кислорода, мл/мин;

C(a-v)O2 - артериовенозная разница по кислороду, мл/л.

Чтобы вычислить артериовенозную разницу по кислороду, из содержания кислорода в крови легочных вен (или, если нет сброса справа налево, в артериальной крови) надо вычесть содержание кислорода в крови легочной артерии (или, если нет сброса слева направо, в смешанной венозной крови). Сердечный выброс, который вычисляется приведенным способом, равен легочному кровотоку (то есть объему крови, проходящему через сосуды малого круга за единицу времени). Если нет сброса крови на уровне предсердий, желудочков или магистральных артерий, то он равен и системному кровотоку (объему крови, проходящему через сосуды большого круга за единицу времени). Если же есть сброс слева направо, то легочный кровоток выше системного. В таких случаях их рассчитывают по-разному: в обоих случаях потребление кислорода делят на артериовенозную разницу по кислороду, но для системного кровотока она принимается равной содержанию кислорода в артериальной крови минус его содержание в смешанной венозной крови, а для легочного - в артериальной крови минус в крови легочной артерии.

Чтобы у людей разного веса и роста получить сопоставимые данные, сердечный выброс делят на площадь поверхности тела. Полученный показатель называется сердечным индексом. Нормы приведены в табл. 229.3 .

Метод Фика наиболее точен при низком сердечном выбросе и большой артериовенозной разнице по кислороду.

Для измерения сердечного выброса методом термодилюции катетер Свана-Ганца с термистором на конце вводят в легочную артерию. Затем через проксимальное отверстие катетера в полую вену или правое предсердие вводят холодный раствор глюкозы или физиологический раствор. Изменения температуры крови, протекающей через легочную артерию, регистрируются в виде кривой, площадь под которой обратно пропорциональна легочному кровотоку. Для измерения этой площади кривую температуры автоматически интегрируют.

В 1870 г. немецкий физиолог Адольф Фик впер­вые предложил метод измерения объема сердечного выброса у здоровых животных и людей. Основой этого метода, названного принципом Фика, являет­ся простое применение закона сохранения массы. Данный закон исходит из положения, что количе­ство кислорода (О 2), доставленное в легочные ка­пилляры через легочную артерию, плюс количество О 2 , попадающее в легочные капилляры из альвеол, должны равняться количеству О 2 , которое уносится легочными венами.

Принцип Фика схематически изображен на рис. 710251114.

Рис. 710251114. Схема, иллюстрирующая принцип Фика для измере­ния сердечного выброса[Мф16] .

Количество q 1 кислорода, доставленного в легкие, равно концентрации О 2 в крови легочной ар­терии ([О 2 ] ра ), помноженной на скорость кровотока в легочной артерии (Q), которая равна сердечному выбросу, т. е.

Обозначим количество кислорода, полученное легочными капиллярами из альвеол, как q 2 . При рав­новесии q 2 равно потреблению О 2 организмом. Ко­личество О 2 , которое выводится по легочным венам (обозначим его q 3 ), равно концентрации кислорода в крови легочной вены, [О 2 ] pv „ помноженной на об­щий легочный венозный кровоток, фактически рав­ный кровотоку в легочной артерии (Q), т.е.

Согласно закону сохранения массы

Таким образом, объем сердечного выброса

Это уравнение является формулировкой прин­ципа Фика.

Для клинического определения объема сердечного выброса необходимы три значения:

1) объем потребления кислорода организмом;

2) концентрация кислорода в крови легочной вены ([О 2 ] pv );

3) концентрация кисло­рода в крови легочной артерии ([О 2 ] ра ).

Потребление кислорода рассчитывается на основе измерений объема выдыхаемого воздуха и содержания в нем кислорода через определенный промежуток времени.

Так как кон­центрация кислорода в периферической артериальной крови в значительной мере идентична его концентрации в легочных венах, определяется в пробе перифе­рической артериальной крови, взятой иглой для пунк­ций.

Кровь легочной артерии фактически пред­ставляет собой смешанную венозную кровь. Пробы кро­ви для определения количества кислорода берутся из легочной артерии или правого желудочка через катетер.

Раньше использовался относительно жесткий катетер, который надо было вводить в легочную артерию под рентгеновским контролем. Сегодня очень гибкий кате­тер с маленьким баллончиком возле наконечника может быть введен в периферическую вену. Когда трубка внут­ри сосуда, кровоток переносит ее к сердцу. Следуя из­менениям давления, врач может ввести наконечник ка­тетера в легочную артерию без помощи рентгеноскопии.

Пример рассчета объема сердечного выброса здо­рового взрослого человека, находящегося в состоя­нии покоя, показан на рис. 710251114. При потреблении кислорода 250 мл/мин, его содержании в артериальной (легочной венозной) крови 0,20 мл на 1 мл крови и в смешанной венозной (легочной артериальной) крови 0,15 мл на 1 мл крови объем сердечного выброса равен 250/(0,20 - 0,15) = 5000 мл/мин.

Принцип Фика также используется для оценки по­требления кислорода органами, когда есть возможность для определения кровотока и содержания кислорода в артериальной и венозной крови. Алгебраическая подста­новка показывает, что оно равно кровотоку, умноженно­му на разницу между концентрациями О2 в артериаль­ной и венозной крови. Например, если кровоток через одну почку составляет 700 мл/мин, содержание кисло­рода в артериальной крови равно 0,20 мл на 1 мл крови, а в крови почечной вены - 0,18 мл на 1 мл крови, ско­рость потребления должна быть 700 (0,2-0,18) = 14 мл О2 в 1 мин.

Метод Стюарта-Гамильтона определенияи сердечного выброса[Мф17]

Метод применения растворенных индикаторов для измерения объема сердечного выброса также основы­вается на законе сохранения массы; он схематично изображен на рис. 710251134.

Рис. 710251134. Метод разведения индикатора для измерения сердеч­ного выброса. В этой модели, в которой нет рециркуляции, количе­ство q, мг, красящего вещества одномоментно впрыскивается в точке А в кровоток при Q мл/мин. Смешанный образец жидкости, протекающей через точку В, пропускается с постоянной скоростью через денситометр; С - концентрация красителя в жидкости. Получающаяся в результате кривая концентрации красителя в точ­ке В имеет конфигурацию, показанную в нижней части рисунка.

На схеме жидкость течет че­рез трубку со скоростью Q (мл/с), и q (мг) красящего вещества одномоментно вводится в ее поток в точке А. Смешивание происходит в какой-то точке потока ниже по течению. Если небольшую пробу жидкости непре­рывно там забирать (из точки В) и пропускать через денситометр, кривая концентрации красящего веще­ства, с, может быть записана как функция времени t (см. нижнюю часть рис. 710251134).

Если между точками А и В не происходит потери красящего вещества, количество красителя, q, прохо­дящее через точку В между моментами времени t 1 и t 2 , будет равно

где - средняя концентрация красителя. Ее величина может быть вычислена путем деления размера области концентрации красителя на продолжительность (t 2 –t 1 ) кривой, т.е.

Подставляем величину с в уравнение 45.6 и вычис­ляем значение Q.

Таким образом, поток может быть измерен путем деления количества индикатора (красящего вещества), введенного в него выше по течению, на отрезок, распо­ложенный под кривой концентрации красителя ниже по течению.

Этот метод широко использовался для измерения объема сердечного выброса у человека. Измеренное количество какого-либо индикатора (красителя или радиофармпрепарата, который остается внутри циркуляции) быст­ро вводится в крупную центральную вену или правую половину сердца через катетер. Артериальная кровь непрерывно пропускается через детектор (денситометр или счетчик радионуклидов), и кривая концентрации инди­катора записывается как функция времени.

В настоящее время наиболее популярным методом растворения красящих веществ является термодилюционный метод. Как индикатор здесь используется холодный солевой раствор. Его температура и объем точно устанавливаются перед инъекцией. Гибкий кате­тер вводится в периферическую вену и продвигается так, чтобы наконечник попал в легочную артерию. Маленький терморезистор на конце катетера записы­вает изменения температуры. Отверстие в катетере находится на расстоянии нескольких дюймов от наконеч­ника. Когда конец катетера помещен в легочную арте­рию, отверстие, соответственно, находится в правом предсердии или рядом с ним. Холодный солевой ра­створ быстро вводится через катетер в правое предсер­дие и вытекает через отверстие катетера. Изменение температуры ниже по течению крови записывается тер­морезистором в легочной артерии.

Термодилюционный метод обладает следующими преимуществами: 1) отпадает необходимость в артери­альной пункции; 2) небольшие количества солевого раствора, используемые при каждом измерении, без­вредны, что дает возможность проводить повторные измерения; 3) рециркуляция незначительна. Темпера­тура выравнивается за счет того, что охлажденная кровь протекает через сеть легочных и системных ка­пилляров до того, как во второй раз проходит через терморезистор в легочной артерии.

Метод разработан и описан A. Fick в 1870 году, который в качестве индикатора предложил использовать кислород. Для измерения СВ определяют количество кислорода, поглощаемое из воздуха за определенный отрезок времени. Одновременно берут пробы артериальной и смешанной венозной, взятой из устья легочной артерии, крови и определяют в них содержание кислорода. При этом необходимо определить разницу в содержании кислорода в артериальной и венозной крови, то есть измерить количество кислорода, которое связывается каждым кубическим сантиметром крови во время ее прохождения через легкие. Сердечный выброс вычисляют по формуле: СВ = П02 / (Са02 -Св02),

где СВ - сердечный выброс, л/мин (фактически - количество крови, проходящей через малый круг кровообращения); П02 - потребление кислорода, мл/мин, Са02 - содержание кислорода в артериальной, а Св02 - в венозной крови, мл/л.

Потребление кислорода определяют с помощью спирометра, а артериовенозную разницу по кислороду оценивают, анализируя содержание кислорода в одной из магистральных артерий и легочной артерии.

Поскольку принцип Фика , как любой из методов, основанных на разведении индикатора, подразумевает его равномерное смешивание с кровью, на время проведения исследования необходимо соблюдение следующих условий: стабильное состояние дыхания и кровообращения в момент исследования; анализ содержания кислорода должен проводиться только в смешанной венозной крови, взятой из ствола легочной артерии, где сходятся все венозные сосудистые пути; с помощью прямого принципа Фика нельзя определять СВ при наличии внутрисердечных сбросов крови, поскольку в данном случае часть крови минует малый круг кровообращения.

Несмотря на то что прямой метод определения сердечного выброса по Фику - один из самых точных, в отделениях интенсивной терапии и реанимации он применяется сравнительно редко. Это обусловлено необходимостью сравнительно сложного и дорогостоящего оборудования для оценки потребления кислорода. Вместе с тем в условиях проведения искусственной вентиляции легких эта задача облегчается при использовании современных метаболических мониторов, позволяющих определять содержание кислорода и углекислого газа в контуре вдоха и выдоха. Показатель V02 вычисляют, умножив разницу содержания кислорода на вдохе и выдохе на величину минутного объема дыхания. В настоящее время имеются аппараты ИВЛ со встроенным метаболическим монитором, в которых помимо других параметров осуществляется постоянное измерение V02.

Для получения смешанной венозной крови необходима катетеризация легочной артерии. Связанные с этим проблемы описаны в разделе, посвященном методу терморазведения. Для этих целей можно использовать плавающий катетер с баллоном на конце типа Pulmobal, однако в клинической практике чаще используются термодилюционные катетеры Свана-Ганса, которые от предыдущих отличает наличие встроенного термистора. Поскольку при установленном катетере в легочную артерию СВ проще определить с помощью метода терморазведения, метод Фика может быть оставлен для случаев, когда отсутствует или неисправен регистратор (термодилютор).

Фика метод

(A. Fick, 1829-1901, нем. врач ) метод измерения минутного объема сердца, основанный на определении разницы в содержании кислорода или двуокиси углерода в крови, взятой из правых отделов сердца, и в артериальной крови, а также одновременном определении потребления кислорода или выделения двуокиси углерода.

Для измерения сердечного выброса применяют либометод Фика , либо (чаще)термодилюцию . Эталонным методом, однако, остаетсяметод Фика . По сути, это разновидность метода разведения красителя: "красителем" здесь выступает кислород, место введения - легкие, способ введения - непрерывный.Метод Фика включает определение артериовенозной разницы по кислороду и измерение его потребления.

Уравнение для расчета сердечного выброса таково:

CB = VO2:C(a-v)O2, где

СВ - сердечный выброс, л/мин;

VO2 - потребление кислорода, мл/мин;

C(a-v)O2 - артериовенозная разница по кислороду, мл/л.

Чтобы вычислить артериовенозную разницу по кислороду, из содержания кислорода в крови легочных вен (или, если нетсброса справа налево , в артериальной крови) надо вычесть содержание кислорода в крови легочной артерии (или, если нет сброса слева направо, в смешанной венозной крови). Сердечный выброс, который вычисляется приведенным способом, равен легочному кровотоку (то есть объему крови, проходящему через сосуды малого круга за единицу времени). Если нет сброса крови на уровне предсердий, желудочков или магистральных артерий, то он равен и системному кровотоку (объему крови, проходящему через сосуды большого круга за единицу времени). Если же естьсброс слева направо , то легочный кровоток выше системного. В таких случаях их рассчитывают по-разному: в обоих случаях потребление кислорода делят на артериовенозную разницу по кислороду, но для системного кровотока она принимается равной содержанию кислорода в артериальной крови минус его содержание в смешанной венозной крови, а для легочного - в артериальной крови минус в крови легочной артерии.

Чтобы у людей разного веса и роста получить сопоставимые данные,сердечный выброс делят на площадь поверхности тела. Полученный показатель называетсясердечным индексом . Нормы приведены втабл. 229.3 .

Метод Фика наиболее точен при низком сердечном выбросе и большой артериовенозной разнице по кислороду.

Для измерениясердечного выброса методом термодилюции катетер Свана-Ганца с термистором на конце вводят в легочную артерию. Затем через проксимальное отверстие катетера в полую вену или правое предсердие вводят холодный раствор глюкозы или физиологический раствор. Изменения температуры крови, протекающей через легочную артерию, регистрируются в виде кривой, площадь под которой обратно пропорциональна легочному кровотоку. Для измерения этой площади кривую температуры автоматически интегрируют.

    Пальпация пульса и его оценка.

Артериальный пульс – колебание стенки артерии при повышении объема и давления крови в ней, связанное с сокращением сердца.

Чаще всего его прощупывают на лучевой артерии. Если исследование пульса на лучевой артерии затруднено (гипсовая по вязка, ожоги), то возможно определение его на сонной, бедренной, височной артериях и др.

Характеристики пульса : ритм, частота, наполнение, напряжение, величина.

Ритм - это временной промежуток между пульсовыми волнами. Если они одинаковые, то пульс ритмичный; если разные - то аритмичный.

Частота - это количество пульсовых волн в 1 мин. В норме у взрослого человека - 60-80 ударов в минуту. Если частота пульса менее 60 ударов в минуту, это брадикардия, если более 80 - тахикардия..

Наполнение пульса определяется по силе, с которой необходимо прижать лучевую артерию для того, чтобы ощутить пульсовую волну. Пульс полный, если прилагаемые усилия невелики; пульс пустой, если сила прижатия больше. Наполнение зависит от нагнетательной функции сердца, тонуса сосудов и количества выбрасываемой сердцем крови.

Напряжение пульса определяется по силе, с которой надо прижать лучевую артерию до прекращения пульсации. В зависимости от силы прижатия выделяют пульс твердый (напряженный), умеренный и мягкий.

Величина пульса зависит от наполнения и напряжения. При хорошем наполнении и напряжении говорят о большом пульсе, при слабом наполнении и напряжении пульс считается малым.

Исследование пульса на лучевой артерии :

1. Испытуемый должен быть спокоен, рука находится в расслабленном состоянии.

2. Захватите кисть испытуемого выше лучезапястного сустав так, чтобы ваш большой палец находился с локтевой стороны, а остальные пальцы - с ладонной стороны.

3. Прижмите лучевую артерию 2, 3, 4 пальцами к лучевой кости и найдите место пульсации.

4. Определите все характеристики пульса.

    Определение центрального венозного давления. У чебник

Центральное венозное давление (ЦВД ) – это давление в правом предсердии (от +4 до -4 мм рт.ст, в среднем 0).

ИЗМЕРЕНИЕ ЦЕНТРАЛЬНОГО ВЕНОЗНОГО ДАВЛЕНИЯ (ЦВД).

Уровнем центрального венозного давления (ЦВД) оценивается перфузионная способность сердца и объем циркулирующей крови.

Самый простой и точный метод определения - с помощью аппарата Вальдмана.

Техника Флеботонометр Вальдмана состоит из штатива с линейной шкалой, передвигающейся с помощью винтовой ручки. В центре шкалы укрепляется стеклянная манометрическая трубка, на нижний конец которой надевается резиновая трубка, соединяющаяся с трехходовым краном. Ко второму выходу этого крана присоединяется резиновая трубка, идущая к стеклянному резервуару вместимостью 100 мл, укрепленному в специальном гнезде на штативе. На третий выход надевается резиновая трубка для присоединения с веной больного. В резервуар заливают изотонический раствор натрия хлорида или дистиллированную воду, которыми, переключая трехходовой кран, заполняют всю систему трубок. Уровень раствора в манометрической трубке устанавливают на нулевой линии шкалы. Резервуар, резиновые трубки, трехходовой кран, капельница, манометрическая трубка должны быть стерильными.

В современных мониторных систе­мах используют тензодатчики. При измерении ЦВД необходимо проследить за тем, чтобы больной находился в горизонтальном положении, нулевое значение шкалы ЦВД устанавливают на уров­не правого предсердия. Проекцией правого предсердия на груд­ную клетку является точка, расположенная на 3/5 диаметра груд­ной клетки выше горизонтальной плоскости, на которой разме­щен больной. Конец венозного катетера устанавливают таким образом, чтобы он находился на 2-3 см выше правого предсер­дия. Нормальное значение ЦВД у взрослых колеблется от 50 до 120 мм вод. ст.

Высокий уровень ЦВД с большими размахами колебаний свидетельствует о слишком глубоком введении катетера, когда он достигает полости правого желудочка - его необходимо подтянуть.

Низкое ЦВД (0-50 мм вод. ст.) свидетельствует о гиповолемии и эффективной работе сердца, необходимо восполнение объема крови. Критической величиной ЦВД является уровень в 15-20 мм вод. ст.

Повышение ЦВД за пределы 100 мм вод. ст. расценивается как признак вероятной недостаточности сердца.

    Определение времени кругооборота крови. У чебник

Время полного кругооборота крови – это время, необходимое для того, чтобы она прошла через большой и малый круги еровообращения.

Применяется ряд способов, принцип которых заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие.

Например, в локтевую вену вводят раствор алкалоида лобелина, действующего через кровь на дыхательный центр продолговатого мозга, и определяют время от момента введения вещества до момента, когда появляется кратковременная задержка дыхания или кашель. Это происходит, когда молекулы лобелина, совершив кругооборот в кровеносной системе, подействуют на дыхательный центр и вызовут изменение дыхания или кашель.

В последние годы скорость кругооборота крови по обоим кругам кровообращения (или только по малому, или только по большому кругу) определяют с помощью радиоактивного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену радиоактивного изотопа натрия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.

Время кругооборота крови у человека составляет в среднем примерно 27 систол сердца. При 70-80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20-23 секунды . Не надо забывать, однако, что скорость течения крови по оси сосуда больше, чем у его стенок, а также, что не все сосудистые области имеют одинаковую протяженность. Поэтому не вся кровь совершает кругооборот так быстро, и указанное выше время является кратчайшим.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на малый круг кровообращения и 4/5 - на большой круг